
Section 10: Lab 5 Details
CSE 451 18WI

Part A: File
Operations

Details of Inode/Extent Regions

Boot
Block

Super
Block Inodes Extent UnusedSwap Bitmap

Let’s take a quick look at the layout of how the inodes are laid out on disk.

Inodefile

● The inodefile is the “inodes” section on disk, which stores the table of
inodes (struct dinode)

○ Reading from and writing to file is just like reading/writing a normal file

● The 0th inode is the inodefile itself: the data field in the 0th inode
corresponds to the inodes region

● The 1st inode is the root directory: the data block for this inode is an array
of directory entries

Inodefile

struct
dinode

struct
dinode

struct
dinode

inode
file

inum 0 1

rootdir

type T_DIR
console ...

2 ...

inodefile.data

blk 8000 8001 8002

Extents
...

...

grep

7 8

kill

struct
dinode

struct
dinode

16

foo ...

...

struct
dinode

Extents

● The extents region is where the actual data (that is not the initial inodefile)
for all the files in the filesystem lives.

● An “extent” is a sequence of contiguous blocks of memory, and a single
inode can consist of multiple extents.

● Your job in part A is to work out a clean design of working with these
extents.

Growable Extents

● There are multiple ways of modifying the dinode to allow for growable
space. Here are just a few:

○ repurpose the padding to convert the single extent data to an extent data[N] array.
○ when allocating a new extent, allocate more blocks than strictly necessary by the write

request
○ allocate K direct extent blocks and L indirect extent blocks, which in turn point to another

array of direct extent blocks
■ While this is the system used by the Unix Filesystem, it's nastily complex to get right;

so save this for a "fun" spring break project rather than lab 5 :)

● Important to keep in mind that sizeof(dinode) should divide into 512. Why?

foo.data

Extents

Inodes

dirent
"." 1

dirent
".." 1

dirent
"console" 2

Some people
think that
this is
actually the
data for foo,
but really
it's just a
bunch of
random words
that the TA's
are using to
show how data

in an extent
can span
multiple
blocks. Pretty
primitive,
right? Oh
well. You can
only expect so
much from the
TA's.

blk 8003 9001 9002 9003

rootdir.data

dirent
name inumkey:

...

The 5-Layer Filesystem API

write() filewrite()

fileappend()

filecreate()
open()

writei()

readi()

bread()

bwrite()

brelse()

iderw()

System Calls File API Inode API Block API IDE API

U KERNEL LAND

Part B: Crash
Safety

Write-Ahead Log

● Our goal with the write-ahead log is to save a single disk
transaction/operation (which can consist of a logical sequence of writes
to the disk) so that we can recover from crashes.

● The “write-ahead” aspect entails writing the updated blocks to the log
before writing to the actual blocks themselves.

● The design for the log should ensure that the disk is not corrupted by
partial operations.

Disk Layout

● Add the log region just like we added the swap region in lab 4
● The log will at most contain one transaction, since we clear the log out

after every successful transaction.

Boot
Block

Super
Block Inodes Extent UnusedSwap BitmapLog

● Suppose the user is writing to an empty file cat.txt. This "file write"
operation involves at least two block writes, which we tie together as a
single transaction:

○ Update extent block with new data
○ Update inode block with new size

● Now we want to ensure crash safety by making sure that these writes
happen atomically, i.e. either all writes occur or neither do.

Logging Example (from last week)

Recommended Log Structure

● Commit block:
○ Array of block #'s to write to
○ Flag of whether the transaction is completed or not

● Sequence of data blocks to write

Swap Bitmap

COMMIT BLOCK

[9003, 8002]
Committed: 1

Updated data
block

Updated inode
block

Log API

● The spec recommends designing an API for yourself for log operations:
○ log_begin_tx(): (optional) begin the process of a transaction
○ log_write(): wrapper function around normal block writes
○ log_commit_tx(): complete a transaction and write out the commit block
○ log_recover(): log playback when the system reboots and needs to check

the log for disk consistency.
■ Where/when should this be called? (Hint: inspect kernel/fs.c)

Order of Writes

Since this is a write-ahead log, we update our log before actually writing to the
disk.

● write updated data block to log block #1
● write updated inode block to log block #2
● write commit block to log block #0
● flush updated data block to extent block 9003
● flush updated inode block to inode block 8002
● zero out log

Do you really have to
zero out the whole
log?

Order of Writes

Since this is a write-ahead log, we update our log before actually writing to the
disk.

● write updated data block to log block #1
● write updated inode block to log block #2
● write commit block to log block #0
● flush updated data block to extent block 9003
● flush updated inode block to inode block 8002
● zero out log

Nope! Just zeroing
out the commit block
is all you need, and is
faster than clearing
the whole log!

What should log_write() do differently?

● The log_write() function is intended to be a wrapper function around
all normal bwrite operations.

● Instead of directly writing the block to disk, we want to:
○ write the block information to our log data structures
○ keep the block in memory until the transaction has been successfully committed

● In order to write to a block but keep the changes in memory, look into
setting the B_DIRTY bit for that block when calling bwrite -- this will
ensure that the changes are not immediately flushed to disk

What should log_write() do differently?

● Now, once all the block writes for a single transaction have called
log_write(), log_commit_tx() will be called

● Here, once the commit block is successfully flushed to disk, we want to
flush all of our dirty blocks from the previous log_write()s to their
actual location on disk

● So we can unset the B_DIRTY bit, which will ensure that the block cache
flushes them to disk once the refcount on the block in memory goes to 0.

CRA
SH

Image: https://www.petbucket.com/blog/63640/how-to-keep-your-cat-from-chewing-cables.html

What happens if we crash?

Crash Scenario #1: Codename 0xDEADBEEF

● write updated data block to log block #1
● write updated inode block to log block #2
● bwrite commit block to log block #0
● bwrite updated data block to extent block 9003
● bwrite updated inode block to inode block 8002
● zero out log

CRASH

On recovery, we inspect
the log and find that the
commit block is empty so
the committed flag in log
block 0 is set to 0. Thus we
know that the operation
did not complete and we
discard the log.

Crash Scenario #2: Codename 0xCAFEBABE

● bwrite updated data block to log block #1
● bwrite updated inode block to log block #2
● bwrite commit block to log block #0
● bwrite updated data block to extent block 9003
● bwrite updated inode block to inode block 8002
● zero out log

CRASH

On recovery, we inspect
the log and find that the
committed flag in log block
0 is set to 1. Thus we have
the entire operation in the
log, so we can replay the
operations, updating the
data and inode blocks, and
then clear the log.

Crash Scenario #3: Codename 0xF007BA11

● bwrite updated data block to log block #1
● bwrite updated inode block to log block #2
● bwrite commit block to log block #0
● bwrite updated data block to extent block 9003
● bwrite updated inode block to inode block 8002
● zero out log

CRASH

On recovery, we inspect
the log and find that the
committed flag in log block
0 is set to 1. Thus we have
the entire operation in the
log, so we can replay the
operations and clear it.
Note that because our
writes are idempotent, we
can rewrite the blocks even
if they were already
written.

What’s wrong
with attu? �

What to do if attu is being slow…

Might have noticed that attu, specifically the file system, has been slow at
certain times during the past few days. Here are some alternatives to working
on attu:

● A Linux VM
● Lab Machine (working with a cloned repo in /tmp directory)
● Working on a mac*

*Not recommended due to differences between MacOS and linux. We will be
grading on attu, so beware!

Linux VM

You can find information about using a VM here:

https://www.cs.washington.edu/lab/software/linuxhomevm

You’ll want to download and use the 18WI VM.

Can be a bit of a pain to set-up, but once it’s up it’s very nice to have!

https://www.cs.washington.edu/lab/software/linuxhomevm

Lab Machine /tmp directory

Accessing a lab machine:

● Walk into the lab and find a free linux machine
● SSH into a lab machine (<hostname>.cs.washington.edu)

○ Need to be on CSE wifi
○ Hostname is posted on the physical machine, go into the labs and write down some

names

● SSH into attu and then SSH into a lab machine (when you’re off campus)
○ (attu’s main overhead lately has been the network file system so this should still be pretty

fast)

Lab Machine /tmp directory

Lab machine /tmp directory is stored locally on the machine and is not part of
the attu file system. This means it will be fast even when attu is slow.

Clone your repo in the /tmp directory and work on the lab.

Be sure to commit and push often, the /tmp directory is short for temporary!

MUST PUSH when finished working, or else changes could be lost.

